Registration of Multimodal Brain Images: Some Experimental Results
نویسندگان
چکیده
Joint histogram of two images is required to uniquely determine the mutual information between the two images. It has been pointed out that, under certain conditions, existing joint histogram estimation algorithms like partial volume interpolation (PVI) and linear interpolation may result in different types of artifact patterns in the MI based registration function by introducing spurious maxima. As a result, the artifacts may hamper the global optimization process and limit registration accuracy. In this paper we present an extensive study of interpolation-induced artifacts using simulated brain images and show that similar artifact patterns also exist when other intensity interpolation algorithms like cubic convolution interpolation and cubic B-spline interpolation are used. A new joint histogram estimation scheme named generalized partial volume estimation (GPVE) is proposed to eliminate the artifacts. A kernel function is involved in the proposed scheme and when the 1 order B-spline is chosen as the kernel function, it is equivalent to the PVI. A clinical brain image database furnished by Vanderbilt University is used to compare the accuracy of our algorithm with that of PVI. Our experimental results show that the use of higher order kernels can effectively remove the artifacts and, in cases when MI based registration result suffers from the artifacts, registration accuracy can be improved significantly.
منابع مشابه
Optimized co-registration method of Spinal cord MR Neuroimaging data analysis and application for generating multi-parameter maps
Introduction: The purpose of multimodal and co-registration In MR Neuroimaging is to fuse two or more sets images (T1, T2, fMRI, DTI, pMRI, …) for combining the different information into a composite correlated data set in order to visualization, re-alignment and generating transform to functional Matrix. Multimodal registration and motion correction in spinal cord MR Neuroimag...
متن کاملRegistration of Multimodal Brain Images Using Modified Adaptive Polar Transform
Image registration has great significance in medicine, astrophotography and satellite imaging, so a lot of techniques have been developed within its perspective of one or the other discipline. This paper presents a method for medical image registration of multimodal brain images using Modified Adaptive Polar Transform (MAPT). This algorithm can be used to register images of the same or differen...
متن کاملDiffusion Maps for Multimodal Registration
Multimodal image registration is a difficult task, due to the significant intensity variations between the images. A common approach is to use sophisticated similarity measures, such as mutual information, that are robust to those intensity variations. However, these similarity measures are computationally expensive and, moreover, often fail to capture the geometry and the associated dynamics l...
متن کاملCompensation of brain shift during surgery using non-rigid registration of MR and ultrasound images
Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively. Methods: This study, which is done...
متن کاملMultimodal Image Registration using Statistically Constrained Deformable Multimodels
The registration of multimodal images remains an intricate issue, especially when the multimodal image pair shows non overlapping structures, missing data, noise or outliers. In this paper, we present a deformable model-based technique for the rigid registration of 2 0 and 3D multimodal images. The deformable model embeds a priori knowledge of the spatial correspondence and statistical variabil...
متن کامل